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Research Accomplishments 

1. Empirical Measurements. Net primary productivity and consumption were 

again measured using the movable exclosure method at four sites (29, 4 0 ,  

21, 32). 

sites. 

2. Laboratory analyses. Nitrogen measurements on foliage, root 

and rhizome samples from 1987 collections were completed. 

3. 

been encoded and verified. 

ungrazed prairie for spectral and energy characteristics are either 

underway or completed. 

for 1987 have been rectified and are undergoing enhancement. 

with FIS are continuing. 

4. Modeling. 

the formal modeling efforts initiated. Dr. Steven Seagle, Syracuse 

University, is modifying a previously validated grazing model for this 

project. 

Publications 

Two manscripts are tentatively in press which contain preliminary results 

and findings from the FIFE effort. 

1. Shapley, T.D., R.A. Ramundo, C.L. Turner, M.I. Dyer and T.R. Seastedt. in 

press. Effects of burning, mowing and nitrogen fertilizer on chlorophyll, 

nitrogen, phosphorus and spectral reflectance characteristics of tallgrass 

prairie. In: Proc. 11th North American Prairie Conf. 

2.  Seastedt, T.R. and J.M. Briggs. in press. Long-term ecological 

questions and considerations for taking long-term measurements. 

from the LTER and FIFE programs on tallgrass prairie. 

International Perspectives on Long-Term Ecological Research. 

Stockholm, Sweden. These Manuscripts have been appended to this report. 

Foliage samples have been obtained for nitrogen analyses at these 

Data analyses. All field and laboratory measurements for 1987 have 

Preliminary analyses comparing grazed and 

A representative series of SPOT and all TM scenes 

Interactions 

Procedures and objectives for modeling have been selected and 

These include: 

Lessons 

In: P.G. Risser (ed) 

SCOPE, 
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Presentations 

Four presentations were made during the funding period that related 

partially or totally to the FIFE research. 

above manuscripts at the Eleventh North American Prairie Conference in 

Lincoln Nebraska and at the International LTER workshop in Berchtesgaden, 

West Germany, the following two presentations were made at the American 

Institute of Biological Sciences national meeting at Davis, California. 

3.  Turner, C.L., T.R. Seastedt and M.I. Dyer. Influence of Grazing on 

Tallgrass Prairie Productivity: 

Measurements. 

4. Seastedt, T.R. The FIFE program on the Konza Prairie. 

Related Accomplishments: 

Seastedt and Briggs have received funding from the KSU Long-Term Ecological 

Research (LTER) program along with additional support from KSU to purchase 

a minicomputer with ARC-INFO and ERDAS software. 

replace the microcomputer/1600 tape drive currently in use, and should 

greatly enhance our ability to do spatially explicit modeling. This 

purchase guarantees that all objectives of our three-year effort can be 

undertaken at Kansas State University. 

initial effort of KSU to become a functional data management facility for a 

portion of the FIFE data base, should NASA want to terminate support for 

FIS after 1990. 

In addition to presenting the 

Implications to Remote Sensing 

This $97k system will 

This purchase also represents the 



In Press: Risser, P.G. (ed). International Perspectives of 

Long-Term Ecological Research. SCOPE, Stockholm. 
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"We have just enough time left in this century to achieve 

a major new synthesis and understanding of the Earth 

System.. ." (NASA 1988) 

Introduction 

The earth, with its global problems of overpopulation, over-use and 

abuse of fossil fuel and nuclear energy, and production of toxic wastes, 

has often been compared to a sick patient. Usually, the amount of I 

attention given a sick individual is proportional to the severity of the i 
I 

illness. Healthy individuals require but an occasional check-up with I 

measurements focused on long-term health trends. "Illness" is recognized 

as a significant deviation from the long-term trends. 

grim satisfaction in knowing that the continued deterioration of the 

biosphere mandates measurements such as those underway as part of the Long 

We might take some 

Term Ecological Research (LTER) program. Long term monitoring does not 

necessarily imply that we can keep our ecological systems out of intensive I 
I 

care, but this activity represents a minimal activity for responsible I 
individuals and agencies interested in placing current environmental 

problems into perspective. Long-term measurements are directed at 
I questions involving phenomena not interpretable or perhaps not useful when 
~ 

viewed over short (annual or less) time scales, but are related to the 

long-term "health" or functioning of the system. Thus, the LTER data 

provide the context in which short term observational or experimental 

results can be interpreted (Magnuson, in press). 

The rationale for making long-term measurements of biological 

phenomena is well known in North America (Iker 1983, Likens 1983, Callahan 



2 

1984, Strayer et al. 1986, Tilman in press). 

Ecological Research (LTER) program can provide a blueprint for current 

efforts involved in evaluating ecosystem responses to potental changes in 

energy, water and trace gas dynamics occurring on the earth's surface. 

Certain LTER studies are especially useful in linking remotely sensed, 

We believe that the Long-Term 

large-scale measurements to site specific, fine-scale biological phenomena. 

Such data will provide the necessary empirical information to link global 

climate models to ecosystem phenomena and in doing so will establish the 

importance of the biotic system in cause-effect relationships with surface 

climate. 

the biosphere that regulate trace gases can improve both our understanding 

of terrestrial ecosystems and our ability to predict regional- and global- 

scale changes in atmospheric chemistry." (Mooney et al. 1987). 

"Focused studies of the interactions between the atmosphere and 

This chapter attempts to identify a set of long-term ecological 

questions that are useful to a national or international network of 

research sites. While there exists an infinite list of interesting 

questions that could be addressed with long-term studies, a realistic 

and goal-oriented list of measurements is presented. The criteria for 

selecting these questions involved identifying variables that 1) are useful 

intersite comparisons, 2) are not strongly biased by spatial scaling 

factors, and 3) can provide the necessary linkages between 

atmospheric/climatological variables and biological measurements. 

list of proposed variables for study was developed from the "core LTER 

measurements", a guideline used since the inception of the LTER effort 

(Callahan 1984), from recommendations suggested in Earth System Science 

(NASA 1988), and from practical experience with the recent NASA-FIFE 

International Surface Land Climatology Project conducted on the 

Konza Prairie LTER site (Sellers et al. 1988). 

The 

While appropriate examples 
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are taken from many terrestrial systems, particular emphasis has been given 

to questions that have interested researchers studying grasslands. 

build on the work of Strayer et al. (19861, "Long-Term Ecological Studies: 

An Illustrated Account of Their Design, Operation and Importance to 

Ecology". 

research productivity, of what constitutes "long-term research" and reasons 

for the "successes" of previous and existing long-term research efforts. 

Their findings emphasized that individual scientists and not specific 

research protocols or experimental designs were largely responsible for 

successful long-term research efforts. Here, however, we suggest that 

certain constraints on research designs are important if a goal of the 

research is to benefit directly a regional or global network. 

We 

That important publication provided useful definitions of 

Finding Appropriate Objects for Long-Term Network Measurements 

The five core areas of the LTER include studies of the following 

topics (Callahan 1984): 

1. Spatial and temporal distributions of populations, 

2. Patterns and frequency of disturbance, 

3. Pattern and control of primary production, 

4. Pattern and control of organic matter accumulation, and 

5. Patterns of inorganic input and movements through soils. 

While excellent research has been done on some or all of these topics at 

one or more of the LTER sites, the current effort on linking sites in 

regional or global networks suggests that certain measurements are likely 

to be more useful than others. 

A mechanistic, systems approach suggests that researchers make time- 

series measurments of atomospheric inputs, the state of the system, and the 

response variables. Often, this translates to measuring weather, the 

numbers, kinds and mass of biotic components, and output functions such as 
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changes in the amounts of state variables. 

these parmeters are measured is site-specific. A few sites are fortunate 

to have "integrated output responses" such as stream chemistry and stream 

flow data. 

productivity or nutrient fluxes as output responses, often calibrated from 

microsite measurements. 

community structure phenomena. 

however, we submit that the maximum amount of information per unit of 

effort can be obtained by studying primary ecological objects (organisms 

and ecosystems) rather than arbitrary composites of these objects. 

The spatial scale at which 

Other sites can only report net primary and secondary 

Many of these latter sites therefore focus on 

Using criteria proposed by Rowe (1961), 

The most interesting and useful empirical studies of individual 

species have been long-term in nature (cf. Iker 1983, Strayer et al. 

1986). 

respect to spatial patterns remain of keen interest to many ecologists. 

Studies of within- and between-habitat species diversity with 

Nonetheless, we suggest that individual species, species lists or indicies 

derived from species lists make poor primary intersite comparison 

measurements. The species (or population) is not a constant functional 

unit when viewed either within sites or across environmental gradients. 

The relevant units to address intersite comparisons must be constants, w i t h  

units that confer equivalency across sites, and these units must be able to 

aggregate into meaningful values at different spatial scales. 

mass (including elements, trace gases etc.) are the obvious candidates for 

study. Biologists may still focus on the biota as cause and effect 

participants in energy and mass transformations, but both the forcing 

functions and the response variables must employ units comon to all sites. 

Eventually, life history characteristics and physiological responses of 

the individual species will provide a mechanistic interpretation of site- 

specific responses. Even then, however, these responses will be governed 

Energy and 
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by spatial patterns not usually measured in population studies (Huston et 

al. 1988). 

All LTER sites have been charged with studying "disturbance" as a core 

measurement. 

problems associated with the concept that may prevent "disturbance ecology" 

from becoming a major tenet of ecological theory (Evans et al., in press). 

One problem has been the popularity of the topic, and the inevitable misuse 

of the term that comes with popularity. 

simultaneously to describe a system input (e.g., a storm) and system output 

(e.g. species die-off). Obviously, the latter is the interaction of the 

system with an input, and is therefore very much a characteristic of the 

system while the former is uncontrolled by the state of the system. The 

second problem with disturance theory is that identical inputs can produce 

very different outputs depending upon the inital state of the system and 

the scales at which the output is measured. For example, fire adversely 

affects a number of populations of plants and animals in the tallgrass 

prairie. Nonetheless, certain species are benefited and periodic fires are 

required for the perpetuation of the system. 

fire the disturbance in this system? Can systems lacking stable equalibria 

be disturbed? 

disturbances can be viewed more logically and mechanistically as 

consequences of structural and life-history characteristics of biological 

systems. Our own group found the discussions about species and ecosystem 

responses to disturbances" to be largely an exercise in after-the-fact 

descriptive ecology and a topic not conducive to the development of 

predictive models. 

type questions involves explicit identification of forcing functions and 

the responses of the system at specific levels of resolution. 

Our own experience with this topic has suggested two serious 

"Disturbance" is used 

Is fire or the absence of 

System-level properties of resistance and resilience to 

A much more productive approach to generic disturbance- 

In other 
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words, we believe that the LTER core area involving disturbance can be 

adequately addressed within the context of studies focused on the other 

core areas. This is certainly true in grasslands and agroecosystems where 

studies use fire, grazing or tillage practices as experimental 

manipulations. 

The remaining three core areas of the LTER program provide a logical, 

unified focus for regional and global networks. These core areas employ 

units that are constants and provide the direct links between biotic and 

atmospheric processes. A combination of relatively new, spatially explicit 

measurements, in conjunction with traditional methodologies, will allow 

ecologists to study biotia-climate interactions while concurrently 

focusing on questions of local interest. 

Primary Productivity 

Forested sites have considerable potential to demonstrate the 

linkages among net primary productivity, trace gases and climatic changes. 

Dendrochronology studies have used annual woody growth increments to 

recontruct recent past climates. 

records of lake ash deposition, and dendrochonology to reconstruct forest 

species composition, fire frequency and growth relationships. Clark (1988) 

Other studies have combined paleobotany, 

demonstrated the relationship between climate and fire frequency which, 

together, shaped the species composition and productivity of the north 

temperate forests. 

al. (1984) which suggests that subalpine forests in western North America 

began to alter their growth patterns with respect to climatic variables 

sometime in the 1960s. 

possible factor. 

Of particular interest has been the work of LaMarche et 

Those authors suggested C02 enrichment as a 

Anthropogenic sources of nutrients in bulk precipitation 

. could, perhaps, be an alternative hypothesis. Regardless, the measurement 

of woody growth and therefore a record of the past productivity is possible 
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at many sites and is a reasonable, partial index of aboveground net primary 

productivity. 

be accomplished at a very infrequent, year-to-decades basis, 2) large 

sample sizes can be obtained and potentially interacting variables (soils, 

species, etc.) can be evaluated, and 3) the samples can be easily archived 

so that future analyses or reanalysis of the same, original data set are 

possible. To complete the story of aboveground productivity, foliage 

production should be measured. 

measurements and procedures are common, but should be supplemented, if 

possible, with satellite derived digital images. 

a spatial perspective not possible with microplot measurements, and the 

types and uses of currently available satellite images are discussed below. 

Such data are particularly desirable since 1) sampling can 

Litterfall or needle production 

These images can provide 

Retrospective analyses of grassland productivity cannot be as 

easily accomplished as forest studies. 

lakes, in conjunction with pollen analyses, may provide some useful 

historical data. Also, carbon isotope studies of sediments, soils 

(including paleosols) and groundwaters in conjunction with these or other 

research may also provide an interesting story, particularly with respect 

to changes in the composition of C3 and C4 plants (O'Leary 1988). 

Sedimentation rates of glacial 

More recent retrospective analyses of indices of grassland 

productivity can also be conducted using the satellite image archives. 

Researchers and sites should move quickly to secure these images lest 

useful information be lost by agencies not funded as data archives. A 

listing of potential data sources (Table 1) indicates the resolution and 

information available from each type of satellite. 

be aware of the various trade-offs involved in using these various types of 

data, and some important considerations are outlined in Sellers et al. 

(1988). 

Investigators need to 

In general, we believe that the high spatial resolution (small 



8 

pixel size) of the Landsat TM or SPOT satellites is extremely useful in 

evaluating within-site topoedaphic or experimental (fire or grazing) 

effects. 

expensive or simply unlikely to be obtained due to relatively infrequent 

overflights in conjunction with moderate to high probabilities of cloud 

cover. In contrast, the NOAA-AMIRR satellite provides relatively low 

spatial resolution (large pixel size) but high temporal resolution, such 

that cross-site, cross-year and seasonal comparisons are possible. The 

potential for using these images as analogs of regional productivity and 

for estimating trace gas interactions and energy exchange is just beginning 

to be developed. Recent improvements of algorithms, particularly those 

employing the vegetation index (Tucker et al. 1985, Goward et al. 1986) or 

some combination of the vegetation index in conjunction with thermal 

measurements (Sellers et al., unpublished results) can demonstrate both 

seasonal and long-term trends in plant biomass and plant vigor. 

that the more sophisticated, high resolution imaging spectrometers 

scheduled for space orbit in the near future will provide much more useful 

data for measuring both biomass and plant productivity at moderate scales. 

This enhancement begins with the anticipated 1991 launch of Landsat 6 with 

the Enhanced Thematic Mapper (ETM) on board. 

information are planned, four in the visible (one being a 15 m pixel 

panchromatic), two in the near-infrared and two in thermal portions of the 

spectrum. 

temperature changes and should therefore be very useful in relating 

vegetation dynamics with energy flux. 

scheduled for the EOS program will make considerable advancements in 

the spectral resolution of these digital images. These standard products 

could also be supplemented with aerial photography, including standard 

However, a seasonal time-series of these types of data is 

We expect 

Eight bands of spectral 

This system is reported to be very sensitive to surface 

Subsequent satellite equipment 
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panchromatic, color and color IR images. Photographic records are 

providing useful for a variety of retrospective analyses. 

The Interaction between Productivity and Surface Climate 

A conceptual model developed by Shugart (Figure 1) suggests 

how we might think about the relationship of LTER measurements to studies 

involved in trace gas fluxes. The latter measurements are, by necessity, 

made on a scale that detects strong diurnal and seasonal fluctuations. 

contrast, LTER measurments have a much coarser temporal scale. However, as 

suggested by the model, these long-term ecological processes ‘function as 

constraints on short-term physiological processes, and therefore mediate 

the response of vegetation to climate. 

phenomenon to emphasize the need to recognize that changes in ecological 

constraints such as fire frequency, herbivory or nutrient availability may 

temporarily 

In 

Here, we present an example of this 

overshadow direct changes in temperature or rainfall. 

Our data on temperate grassland plant productivity demonstrate a 

strong relationship between the type of management treatment and 

productivity (Figure 2). The tallgrass prairie requires periodic fires to 

maintain its species composition and productivity (e.g. Knapp and Seastedt 

I 

1 
i 1986). 

C4 grasses. However, some but not all drier than average years result in 

more productivity by the combination of C4 and C3 grasses, forbs and woody 
~ species found in the unburned prairie. Following a fire, the blackened I 

soil surface of burned prairie is exposed to direct solar radiation and 

converts much of this energy into sensible heat absorbed by the soil 

(Figure 3). 

conjunction in greater rates of evapotranspiration, results in a cooler 

soil surface. 

soils on the burned sites lack the thermal enertia of generally moister, 

In average or wet years, annual burning in late spring benefits the 

I 

I 
I 

I 

However, by midsummer, the re-establishment of the canopy, in 

This pattern is reversed at the 10 cm depth, where the drier 
I 

1 
I I 
I 
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litter-covered soils of the unburned sites. 

evaporation coupled, perhaps, with higher rates of reflected infrared 

radiation keep burned areas cooler in midsummer than unburned areas (Figure 

4). This thermal (channel 6) Landsat TM image shows that burned watersheds 

are, on average, several degrees cooler than adjacent unburned areas 

(Figure 5, see also Asrar et al. 1988). These data demonstrate that the 

ecological constraints operating on the vegetation (here, a spring fire) 

influence both the hydrologic and energy budget. 

detectable at both a micro- and macro-scale level. Obviously, a change in 

the fire frequency of relatively large tracts of grassland could have an 

impact on the regional climate. 

The greater rates of 

These changes are 

Grazing by cattle also had a measureable affect on sensible 

heat as measured by the TM image (Figures 4 & 5). 

in August, presumably because the grazed vegetation was physiologically 

more active than a similar amount of ungrazed vegetation and was 

transpiring relatively greater volumes of water. 

amounts and physiology of the vegetation and thereby can greatly alter 

vegetation-climate interactions, particularly in grasslands. 

should also be aware that interactions between energy and nutrients may 

affect consumers such that consumers become important transient controlling 

factors on net primary productivity (White 1984). 

operate directly via consumption of plant parts or indirectly, by 

controlling plant species composition (Schowalter 1981). Thus, knowledge 

of consumer populations may contribute to an understanding of vegetation- 

climate interactions. This observation also has particular relevance in 

agroecosystems, where biotic mechanisms of consumer regulation have been 

severely altered. 

Grazed areas were cooler 

Consumers affect both the 

Investigators 

These controls can 

Nutrients 
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Virtually all LTER sites measure nutrient inputs, standing 

crops and outputs. 

wetfall, often associated with the National Atmospheric Deposition Program 

(NADP). 

or deposition associated with dew can be considerable (e.g. Lindberg et 

al. 

inputs of nitrate, ammonia, sulfate and the major cations. Inventories of 

the standing crops of the major elements in vegetation was initiated at 

many sites during the International Biological Program. Hopefully, such 

data have been archived for future analyses or as baselines for future 

comparisons. 

numerical data. 

monitoring net inputs or outputs of trace gases (C02, NO,, "3, HS, or 

S02). 

(Gosz et al. 1988), and procedures to estimate fluxes, this deficiency 

should be resolved at a few sites at least. Moreover, as mentioned above, 

the trace gas fluxes are tied to diurnal phenomena occurring under the 

"constraints" of the ecological processes being studied by the LTER. 

Empirical results and modeling efforts currently underway as part of FIFE 

(First ISLSCP Field Experiment) should be able to tell us the 

relationships and sensitivity of measurements such as productivity to 

short term and seasonal estimates of gas flux. 

The input data may be restricted to analyses of 

This measurement is often inadequate because dryfall deposition 

1986). Most sites obtain pH measurements in conjunction with the 

Our site archives plant and soil samples along with the 

To our knowledge, no LTER site has engaged in long-term 

However, with the advent of large path-length infrared spectroscopy 

Terrestrial temperate and boreal systems tend to exhibit strong 

nitrogen limitations while tropical systems appear to be often phosphorus 

limited. 

energy or water is not limiting, i.e., under conditions otherwise 

favorable for plant growth (Schimel et al. in review). 

capital of the vegetation itself as well as the available soil reserves 

Nutrients become constraints on plant growth during periods when 

The nutrient 
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may regulate productivity at a particular point in time. 

question of interest to those involved with climatic change questions is 

the extent that nutrient limitations may affect vegetation responses (e. g . 
Tissue and Oechel 1987). If plant growth is nutrient as opposed to energy 

limited, then carbon dioxide enrichment and/or increased temperatures 

should not affect productivity to the extent that would occur without 

concurrent limitation by nutrients. In tallgrass prairie, an improved 

energy environment (created by fire) results in a higher nitrogen use 

efficiency (WE) of the vegetation (Oj ima 1987). With this greater 

production, however, comes increased detritus build up and nutrient 

immobilization. In several biomes, including the taiga (van Cleve et al. 

1983) and tallgrass prairie (Knapp and Seastedt 19861, plant litter has a 

direct negative physical effect on energy availability to plants. 

Detritus production could therefore affect productivity both by affecting 

usable energy inputs and by influencing nutrient availability. 

shifts in energy, nutrient and water limitations, in conjunction with 

negative feedbacks resulting from biomass production prevent the system 

from maximizing its production response. 

therefore need to be studied. 

An obvious 

Seasonal 

Indices of nutrient availability 

Agroecosystems have additional nutrient inputs and outputs not found 

or not important in natural systems. 

fertilizers and outputs in the form of harvested plant parts tend to 

create an artificially dynamic system. 

have potential additional exports of trace gases or leaching losses, and 

certain agricultural practices are probably having a large effect on trace 

gas dynamics (Mooney et al. 1987). 

nutrients is warranted given the progressive enrichment of groundwaters 

with undesirable organics and nitrates. 

Nutrient supplements from 

Areas employing irrigation also 

A detailed accounting of these 

Moreover, the tillage of the 
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soil, the artificial, excessive harvesting of plant nutrients, in 

conjunction with applications of fertilizers, have created unique 

situations of nutrient limitation, soil acidification and aluminum 

toxicity problems for agricultural systems (Adams 1984). Indeed, many 

sites have been so totally altered by intensive agricultural practices 

that moderate changes in temperature, rainfall, rainfall chemistry or 

rainfall pH would appear of secondary consideration relative to the direct 

human manipulations. Agricultural regions are so vast, however, that 

their impacts on atmospheric and groundwater chemistry need to be 

documented. 

and tillage manipulations. 

control the system interactions and responses to climatic inputs. 

In these systems the "ecological constraints" are the crop 

These, like fire and grazing in the prairie, 

Measurement of nutrient outputs from ecosystems has proved to be 

an extremely relevant and useful long-term index of integrated system 

behavior. 

(1983) have provided ample examples of these measurements. 

stream pH and stream nutrient responses to various anthropogenic 

manipulations comprises some of the most important ecological research of 

this century. 

integrated ecosystem response to changes in atmospheric inputs or changes 

induced by within-system manipulations. In similar fashion, the new 

generation of remote sensing equipment scheduled for earth orbit within 

the next 10 years should provide equivalent information for terrestial 

systems. Multispectral scanner, high-resolution sensors will provide a 

spatially explicit measurement of the integrated landscape response to 

changes in atmospheric inputs and landscape manipulations. 

chemical properties of vegetation including water status and nitrogen 

content can already be measured to some extent with current satellite data 

Likens and Bormann (1977), Bormann and Likens (1979) and Likens 

Their work on 

Stream chemical analyses have provided a measurement of the 

Certain 
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(Rock et al. 1986, Waring et al. 1986). 

Organic Matter 

Plant detritus and soil organic matter provide the major reservoir of 

nutrients in most terrestrial ecosystems. This storage component provides 

the "resistence" of the system to changes caused by the destruction of the 

vegetation. The tropics-to-taiga gradient in organic matter is an example 

of the interaction between net primary productivity, decomposers and 

climate (Swift et al. 1979). 

an oversimplification. Nonetheless, plants appear to have dealt better 

with climatic restraints than have the decomposers. 

the east-to-west gradient in soil organic matter observed across the 

prairie is largely controlled by moisture (Jenny 1930). Prediction of 

changes in the organic reservoir therefore potentially depends upon the 

interaction of temperature and moisture, and the net effects that these 

variables have on production and decomposition (Hunt et al. 1988). 

if we predict warmer and drier conditions for the North American tallgrass 

prairie, we would predict the system to shift towards that observed 

further west. This senario suggests reduced productivity, with an 

eventual reduction in soil organic matter. One would therefore project 

relatively enhanced levels of decomposition and mineralization until a new 

equalibrium between production and decay develops. 

predict an annual net C02 release and enhanced nutrient losses via 

atmospheric or groundwater exports. 

to be rather insensitive to short-term manipulations of productivity and 

decomposition, but should be useful monitors of long-term changes (Jenny 

1980, Ojirna 1987, Ojima et al. in press). Moreover, such data are 

generally available on a regional basis, and have been modeled very 

successfully using climate and management constraints as forcing functions 

Any brief interpretation of this pattern is 

In the United States 

Thus, 

We would therefore 

Soil organic matter measurements tend 
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(Parton et al. 1987a, 1987b). 

Investigators need to recognize that edaphic factors and climatic 

variables may produce interaction effects that add to the complexity of 

regional patterns. A recent example is found in Sala et al. (1988). That 

study found that sites with certain soil types were relatively more 

productive under below-average rangefall, while other soil types were 

relatively more productive under average or above-average rainfall. 

factors must be known if intersite data are to be used in regional 

predictive models, and the relevance of these findings to models linking 

Such 

ecosystems to global climatic models should be particularly obvious. I 

Scalinn Considerations 

The above discussion argues that measurements of factors controlling 

net primary productivity, nutrient cycling process and organic matter 

dynamics are likely to be the most useful and relevant contributions of 

LTFX studies to a larger network system. The problem remains, however, as I 

to how to integrate point measurements so that these data can be used as 

useful estimates of regional dynamics. 

are dealing with spatial and temporal variability 

measurements and site-specific phenomena (species, edaphic factors) to 

regional averages. 

plot size remains subjective (Wiegert 1962). 

scaling is developing (e.g. Allen et al. 1984, Urban et al. 1987). 

Among the more obvious problems 

and relating site 

The problems of scaling are nothing new; the optimal 

A large literature on 

By 

far, the most productive approach we have seen involves the use of 

explicit spatial models to aggregate ecosystem processes (e.g. Huston et 

al. 1988). Successful large scale regional models of net primary 

production, nutrient cycling and organic matter dynamics have to date 

i 

i employed a coarser approach based on the ecological constraints of climate 

and soils (Parton et al. 1987a, 1987b). However, plans are underway to 
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interface the fine-scale, spatially explicit models as inputs to the 

larger-scaled models (Shugart, this volume). 

a two-step approach (1. organismic to ecosystem process level phenomena 

and 2. ecosystem process level phenomena to GCMs) will be required. 

Inputs required for global scale models may require large spatial 

We believe that a minimum of 

resolution but fine temporal resolution. As discussed above, such data 

will likely use satellite data and algorithms developed from FIFE-type 

projects (Sellers et al. 1988). 

convinced us that certain characteristics measured at small plot scales 

can be directly related to larger scale measurements (e.g. Figures 2-4). 

These measurements can be scaled up to function in input-output 

relationships with GCMs. 

"ecological constraints" (i.e. land management) contributions are not 

included. 

primary productivity, i.e., fire, fire history or grazing in prairie or 

changes in cropping and tillage practices in agroecosystems, will alter 

these algorithms. 

Our own work with that project has 

However, large errors will be introduced if the 

In our region, changes in the "ecological constraints" to net 

The LTER sites must also serve as indices of system response to 

changes in atmospheric inputs. The long-term acid rain studies of Hubbard 

Brook (Likens 1983) are typical examples of this function. 

information may be relatively easier to address for some systems and for 

some variables over others. 

measuring export of nutrients from two watersheds (Figure 6) .  

Dismal River system, a few baseflow samples accompanied by a storm-event 

sampler should produce a very accurate measure of export. 

inherent variability and high degree of predictablility in flow from this 

sandhills prairie makes detection of patterns and trends a potentially 

easy task. 

Such 

Consider the problems associated with 

In the 

The lack of 

In contrast, the Blue Beaver Creek system in Oklahoma exhibits 
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extreme variability and little predictability. Stream discharge appears 

to be largely controlled by surface runoff in this mixed-grass drainage. 

The ability to show some statistically significant change in export in 

this system as a result of changes in land management or climatological 

inputs would be difficult if not impossible for studies shorter than a 

decade in duration. 

with high variability in annual foliage productivity of North American 

grasslands (Figure 7). This illustration, taken from Sala et al. (1988) 

was created by looking at differences in foliage production between good 

and bad years, divided by the average foliage production. The graph 

indicates that the sandhills of Nebraska is a relatively more stable 

environment than the western plains of Oklahoma. 

itself, can become a long-term measurement, and an analysis of regional 

variability such as that conducted by Sala et al. (1988) should identify 

sites that have intrinsicly lower variability. For studies interested in 

evaluating directional changes, low variability/high predictability sites 

and variables appear to be a desirable characteristic. 

ecosystems such as net primary productivity are certainly less variable 

and less sensitive to the vagaries of climate than are the individual 

species. 

and climate (e.g. LaMarche et al. 

correcting for normal yearly variations in climate. 

This high variability in stream flow is correlated 

This variability, 

Properties of 

Moreover, deviations from established relationships between NPP 

1984) would appear to also be useful in 

Documentation and Data Base Management 

The value of creating permanent plots, adequately documenting 

procedures, and creating a user-friendly data base cannot be 

overemphasized. 

investigators that collected them (Strayer et al. 1986). 

survived have become ecological treasures. 

With few exceptions, data bases have not outlived the 

Those that have 

Tilman (in press) noted that 
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about 902 of all field studies are three years or shorter in duration. 

Even these short-term studies, if adequately documented and site 

referenced, could be subsequently resampled for similar or other 

ecological questions. 

of valuble data because a number of ecological studies with a "short-term 

focus" were not well documented on our site. 

terminated, we've come up with a number of questions that could have been 

addressed if we could only locate the site where the original measurements 

were obtained. 

documentation of the data. 

data sets. These data can be quickly retrieved and reanalyzed, even in 

the absence of the individual(s) responsible for the original data set. 

One cannot be serious about measuring decade-to-century level phenomena 

without making a serious time and financial commitment to documentation. 

Researchers are referred to Gurtz (1986) and other references in Michener 

(1986) for excellent guidelines in this area. 

We feel that we have lost many thousands of dollars 

Since those projects were 

A similar argument can be made for user-friendly 

We've found a variety of new questions for old 

Conclusions 

The recent Earth System Science Report (NASA 19881, in their 

recommendations and review of ongoing and proposed research for the IGBP, 

concluded, "The overwhelming importance of sustained, long-term 

measurements of global variables emerges clearly from these studies" (pg 

137). Here, we contend that a subset of the LTER core measurements, NPP, 

nutrients and organic matter dynamics, are particularly appropriate for 

relating vegetation dynamics to surface climatological measurements at a 

regional or larger scale. 

biophysical measurements obtained from small plots, measured under known 

Our preliminary results from FIFE suggest that 

ecological constraints, will scale up in a fashion conducive the to ~ 

modeling approaches suggested by Urban et al. (1987). In our region these 
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ecological constraints include the fire and grazing regimes of the 

grasslands, or the particular management practice imposed on 

agroecosystems. 

emphasize that species-level characteristics are driving the spatially 

explicit site responses (Huston et al. 1988). 

must be translated into biophysical rather than simply biological units to 

be useful at the intersite level. 

We do not mean to ignore biodiversity efforts, and 

Nonetheless, these effects 
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Figure Legends 

Figure 1. Conceptual model by H.H. Shugart suggesting the relationships 
between LTER-type measurements (right side of figure) and those 
variables strongly influenced by diurnal variations (left side 
of figure). 

Figure 2. Time series of maximum foliage production on annually burned 
and unburned prairie. 
the vegetation response to treatment. 

Year-to-year climatic fluctuations affect 

Figure 3. Weekly mean minimum-maximum soil temperatures in summer 1987 
for burned (solid lines) and unburned (dashed lines) tallgrass 
prairie at 2 cm and 10 cm soil depths. Note that temperatures 
are relatively cooler on the burned site at 2 crn but are 
relatively warmer at 10 cm, 

Figure 4. A Landsat TM thermal (channel 6) photo of Konza Prairie Research 
Natural Area, a site owned by The Nature Conservancy and managed 
by Kansas State University. 
superimposed over the image. 
pastures are distinguishable by the darker pixel values. 

Watershed boundaries have been 
Burned watersheds or grazed 

Figure 5. Means and standard deviations of pixel values from Figure 4. 
All treatments exhibit statistically different values. 

Figure 6. An 18 year record of maximum monthly streamflow from two 
US Geological Survey Benchmark watersheds. 

Figure 7. Variation in foliage production in the central U.S ( Mean 
values of good years minus mean values in bad years, divided 
by the overall mean; Sala et al. 1988). 
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ABSTRACT 

The effects of burning, mowing and nitrogen fertilizer addition on the 

chlorophyll, nitrogen and phosphorus content of big bluestem were measured 

using a factorial experimental design at Konza Prairie Research Natural 

Area. 

had no effect on mid-season chlorophyll or nitrogen concentrations. 

Chlorophyll concentrations were significantly increased by fertilizer and 

mowing treatments. 

fertilized and mowed plots. 

concentrations of foliage, but nitrogen fertilizer addition significantly 

reduced phosphorus concentrations. 

indicating that 1) nitrogen use efficiency (grams biomass produced per gram 

of foliage nitrogen) is higher on burned prairie, 2) removal of foliage by 

mowing results in more nutrient-rich regrowth, and 3) the absolute amount 

of phosphorus available to big bluestem foliage is limited. The dilution 

of phosphorus caused by nitrogen addition was a consequence of increased 

productivity on these plots and suggests phosphorus uptake in excess of 

requirements for maximum growth. 

and nitrogen additions on the spectral reflectance patterns of vegetation 

While spring burning usually increases foliage production, burning 

Nitrogen concentrations of foliage were higher on 

Mowing also increased phosphorus 

These results support other research 

The relationships between burning, mowing 
I 

indicated that chlorophyll (or nitrogen) concentrations of foliage appeared 

to more strongly affect indices of greenness and plant vigor than did 

the amount of plant biomass. 
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Introduction 

A large and growing literature is available on the factors controlling 

the productivity of tallgrass prairie (Knapp and Seastedt 1986, Ojima 1987, 

Hulbert 1988). 

of spatial patterns of productivity in relation to topography, fire and 

grazing. 

procedures in these efforts (Schimel et al. in review). 

reflectance patterns have been used to monitor seasonal patterns of 

productivity both within and among terrestrial ecosystems (Goward et al. 

1985, Asrar et al. 1986). In order for this type of approach to be useful 

in tallgrass prairie, knowledge of burning, mowing and grazing effects on 

plant spectral reflectance characteristics must be understood on both on a 

per unit of foliage and per unit of area of vegetation. 

and morphology, in conjunction with the absolute amounts of living and dead 

foliage, will affect the spectral reflectance measurements (Sellers 1985, 

Waring et al. 1985). 

Current scientific emphasis is directed at understanding 

There is a growing interest in the use of remote sensing 

Spectral 

Plant physiology 

The present study evaluated the effects of burning, mowing and 

fertilizer additions on the chlorophyll, nitrogen and phosphorus content of 

the dominant tallgrass species, big bluestem (Andropogon aerardii Vit. ). 

These results are then related to the effects of the respective treatments 

on prairie productivity and the spectral reflectance properties of this 

vegetation. 

Study Site and Methods 

Research was conducted on the Konza Prairie Research Natural Area, a 

site owned by the Nature Conservancy in the Flint Hills region of 

northeastern Kansas. 

been 1) annually burned or unburned since 1985, 2) mowed and raked twice 

The study area consisted of 32, 100 m2 plots that had 
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per growing season or unmowed since 1985, and 3) fertilized with 10 g/m2 of 

nitrogen as NH4NO3 or untreated. 

in four replicates of 8 specific combinations of burning, mowing and 

fertilizer additions. Mowing was conducted in late May and in mid July. 

The species composition of these plots are similar to those reported by 

Hulbert (1988). Big bluestem was the dominant grass, but Indiangrass 

(SorRastrum nutans (L. ) Nash) was also abundant. Forbs, including several 

milkweed species and several goldenrod species, were also common, 

particularly in unmowed plots. 

This 2 x 2 x 2 factorial design resulted 

Samples of big bluestem foliage for chorophyll and nutrient analyses 

were collected on 3 July 1987 and immediately placed in refrigerated bags 

and returned to the laboratory. 

measurements. 

then frozen until other analyses were conducted. 

biomass estimates were obtained on 15 July by clipping 0.1 m2 

vegetation from each plot. 

after one mowing while biomass from unmowed plots represented total 

foliage production. 

Leaf sheaths were removed prior to 

Wet weights of these samples were obtained and samples were 

Quantitative samples for 

of 

Biomass from mowed plots represented regrowth 

Methods of both extraction and spectrophotometric analysis of 

chlorophyll were based on the Delaney technique as used by Knapp and 

Gilliam (1985). 

thawed by warming gently between the palms, then cut into 1 cm pieces and 

weighed out on a Mettler balance to 0.01 g. 

carotine was then extracted using 85% acetone, sand and CaC03 in a foil- 

covered mortar and pestle. 

Talboy blender. 

covered, graduated centrifuge tube and diluted up to 10 ml with acetone. 

Each sample was centrifuged for 5 minutes and allowed to settle for 1 hour 

The leaves were taken from the freezer one at a time, 

Chlorophyll A, B and beta 

The leaves were ground for 1-2 minutes with a 

The ground tissue and acetone were poured out into a foil- 
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before measured in wavelengths of 750, 663, 644, 452 nm on a Beckmann DB- 

GT spectrophotometer (Robbelen 1957). 

Nitrogen and phosphorus values for foliage samples were obtained by 

drying and grinding additional foliage, digesting this tissue 

with a micro-Kjeldahl method, and determining nitrogen and phosphorus 

colorimetrically on a Technicon Autoanalyzer. Wet and dry weights of 

leaves were obtained before grinding. 

was later used to convert chlorophyll sample weights for comparison 

of chlorophyll values with those of similar studies. 

The wet-dry ratio of the foliage 

Spectral reflectance measurements were concurrently obtained by 

personnel involved on the NASA-FIFE experiment (FIFE = First ISLSCP Field 

Experiment, ISLSCP = International Satellite Land Surface Climatology 

Project). The spectral measurements measure total amount of reflected 

light at specific wavelengths. 

Vegetation Index, GVI, Kauth and Thomas 1976) based on a linear combination 

of reflectances of various wavelengths, is used to describe the plots. 

Another index of plant vigor used to describe the plots, the normalized 

difference, is a ratio estimator created by subtracting red reflectance 

from the near-infrared reflectance and dividing this value by the sum of 

these reflectances (Goward et al. 1985). 

Here, an index of "greenness", (Green 

Results 

An analysis of variance of nitrogen concentrations indicated no 

interactions among the main treatments of burning, mowing and nitrogen 

additions. 

in the fertilized plots than in control plots (Figure 1). 

significantly higher nitrogen concentrations in mowed plots. 

burning, however, did not significantly affect nitrogen concentrations 

(Figure 1). 

Nitrogen concentrations in foliage of big bluestem were higher 

There also were 

Spring 



An analysis of variance also indicated no interactions among the main 

treatment effects for phosphorus concentrations of foliage. 

increased in mowed plots at about the same ratio as the nitrogen increase 

(Figure 2). 

nitrogen fertilizer was added (Figure 2). 

Phosphorus 

In contrast, phosphorus significantly decreased in plots where 

Fertilization with annnonium nitrate resulted in higher chlorophyll A 

and total pigment concentrations in big bluestem foliage (Figures 3 and 4). 

Mowing also significantly increased pigment concentrations while spring 

burning had no effect. 

interactions between mowing and fertilizer additions (for chlorophyll A 

concentrations) and for mowing and burning (for total pigment 

concentrations). 

concentrations than mowed, unfertilized vegetation while concentrations 

were identical for mowed or unmowed but fertilized vegetation. Burning 

tended to increase pigment concentrations on unmowed sites but decreased 

An analysis of variance indicated modest 

Umowed, unfertilized vegetation had lower chlorophyll A 

concentrations on mowed sites. I 

Plant biomass on the various plots was harvested on 15 July (Figure 

Regrowth after mowing in late may on mowed plots was much greater on 5 ) .  

fertilized than on unfertilized plots. Overall, these midseason values 

show a strong mowing and fertilizer effect, and a non-significant effect of 

spring burning on plant biomass. 

vigor associated with this biomass are shown in Figures 6 C 7. When these 

values are compared with plant biomass (Fig. 5), "greenness" appears to be 

Indices of plant greenness and plant I 
I 

I 

I 
I 

I more associated with nitrogen additions than with biomass, per se. An 

analysis of variance of the reflectance-derived values indicated that all 

treatments except mowing and all two-way interactions among treatments were 

statistically significant. 

burned plots, mowed and fertilized plots and burned and fertilized plots 

In other words, the combinations of mowed and 

I 
I 
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each produced unique reflectance values. 

attributed to fertilizer addition was much more significant than any other 

variable or combination of treatments. 

Discussion 

However, the amount of variance 

Midseason chlorophyll concentrations measured here for big bluestem 

are, on average, somewhat higher than values reported by other 

investigators (e.g. Bray 1960, Ovington and Lawrence 1967, Old 1969, Knapp 

and Gilliam 1985). These higher values reported in this study may reflect 

differences in methodologies rather than actual species differences or 

' differences attributed to site effects. The age of the foliage at.the time 

the chlorophyll measurements were made is important, although Ovington and 

Lawrence (1967) found little seasonal dynamics in concentrations of total 

chlorophyll in a Minnesota prairie. 

Spring burning did not affect midseason chlorophyll or nitrogen 

concentrations. 

unburned vegetation may differ markedly (Owensby et al. 1972), the overall 

amount of nitrogen available to vegetation on burned sites is not markedly 

different from unburned sites ( O j i m a  1987). 

increased productivity observed on burned sites in most years corresponds 

to inceased nitrogen use efficiency by this vegetation. 

effect of burning therefore is attributable to factors other than nutrient 

availability. 

While the seasonality of nitrogen content of burned and 

This implies that the 

The beneficial 

Old (1969) measured the effects of nitrogen addition on mid- 

season chlorophyll content and reported about a 20X increase in 

chlorophyll, a relative difference similar to that found in our study 

(Figure 3). 

nitrogen content of this tissue. 

are not related to chlorophyll concentrations. 

This increase appears to be linearly related to the 

In contrast, phosphorus concentrations 

While mowing increases 
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interested in assessing plant productivity or vegetation interactions with 

chlorphyll, nitrogen and phosphorus concentrations, addition of axnonium 

nitrate increases chlorphyll and nitrogen concentrations, but decreases 

phosphorus content. These data therefore suggest that big bluestem will 

accumulate phosphorus in concentrations higher than those limiting growth, 

i .e . ,  the plant exhibits luxury uptake of this element relative to nitrogen 

and/or other elements. 

Our results indicate that "greenness" or plant vigor as measured with 

the normalized difference procedure is sensitive to both burning and 

chlorophyll (nitrogen) content of the vegetation. The former treatment, 

which in our study did not significantly affect nitrogen concentrations, 

removes standing dead plant materials and litter and thereby changes the 

reflectance properties of the soil surface. Fertilization and mowing 

strongly affect nitrogen and chlorophyll concentrations. The reduction in 

biomass resulting from mowing may negate the positive effect that mowing 

has on chlorophyll and nitrogen content, such that measurements of 

greenness after a certain period of regrowth on mowed plots does not show a 

strong mowing effect. Other studies have suggested that canopy reflectance 

is sensitive to the physiological status of the plant at the time of I 
measurement (Sellers 1985). Our work tends to support this concept in that 

plots with reduced biomass but enhanced nitrogen content tend to have equal 

or greater indices of greenness than m o w e d  but unfertilized vegetation I 

I (Figure 7) .  These findings have important implications to studies I 
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Figure Legends 

Figure 1. Nitrogen concentrations of big bluestem foliage. Controls 

(C), represented by hatched bars, are compared to burned (B) 

plots, mowed (M) plots, or fertilieed (F) plots. 

bars represent one standard error for 16 replicates. 

Phosphorus concentrations of big bluestem foliage. 

Symbols are same as those used in Figure 1. 

Chlorophyll A concentrations of big bluestem foliage. 

Symbols are same as those used in Figure 1. 

Total pigment (chlorophyll A,B and beta carotines) of big 

bluestem foliage. 

Midseason foliage biomass on burned, mowed and fertilized 

plots. 

each mowing and burning treatements. 

Error 

Figure 2. 

Figure 3. 

Figure 4. 

Symbols are same as those used in Figure 1. 

Figure 5. 

Hatched bars represent the fertilized plots within 

Figure 6. Normalized difference, another index of plant vigor, for 

burned, mowed and fertilized plots. 

those used in Figure 5. 

"Greenness" (green vegetation index of Kauth and Thomas, 1976) 

in relation to burning, mowing and fertilizer treatments. 

Controls (C), are compared to fertilized plots (F) within each 

mowing and burning treatment. 

for 8 replicates. 

Symbols are the same as 

Figure 7. 

Bars are one standard error 



. 
12 

0 

0 

d 
v) 

v)' cu 
I 

9 
r 

(SSVVU A 0  % ) lN31N03 N300tlllN 



13 

I C -  

0 0 

(SSVN A 0  % ) lN31N03 SntlOHdSOHd 

- -  

I 



W 
N 
3 

I "  

c9 z 0 



15 

W 
N z 

I I C -  

3- 



16 

i 
1 

P 
W z 
3 
2 
3 

W z 

a 
m 

n 

m 5 

Y 
P 

a 
m 

n 

a 
m 

3 
z 
3 

W z 
3 

I I 

I I I 8 
0 0 
0 0 
CI Q 

I I 

g 0 
0 

0 0 
0 0 
v )  t e3 cu 



. - . - . . . 

17 

z 
3 

0 z P 
W L  z 
0: 

Io 
25 

I 3 
z 



ni 

a 
a 

n 

a 
m 

W 
Z 
3 
z 
3. 

W z 
3 

P 
W z 
3 
z 
3 

0 
W z 
3 

a 
m 

a 
m 

L 

L 

0 ' 1 .  

E- 




